张丹,女,博士,教授,博士生导师。2010年6月博士毕业于南京农业大学(硕博连读)。入选“中原英才计划”中原青年拔尖人才、河南省杰出青年、河南省高校创新人才、河南省农作物品种审定委员会委员、河南省青年骨干教师、中国博士后科学基金资助者选介、河南省耕地轮作扩种大豆专家组成员等。主持多项国家自然科学基金项目及科技部重点研发项目等20余项,发表论文50余篇,获科研奖励7项及国际国内发明专利10余项。国际著名学术期刊Plant Cell、Plant Physiology及New Phytologist等杂志评审专家。
研究领域:作物分子生物学与遗传育种。
主要研究内容:作物品质与抗逆重要功能基因的分子机制研究。
所授课程:生物统计学,作物育种学。
E-mail:zhangd@henau.edu.cn
教育与研究/工作经历
2020/10-至今,英国上市公司官网365,英国上市公司官网365,教授
2010/07-2013/10,英国上市公司官网365,英国上市公司官网365,讲师,副教授
2005/09-2010/06,南京农业大学,作物遗传育种,硕博士学位
2001/09-2005/06,英国上市公司官网365,农学,学士学位
主要承担项目与课题
1. 国家十四五生物育种项目子课题 (2023ZD04069),大豆油菜优质新基因挖掘与育种价值评价,2024-2028,在研。
2. 河南省杰出青年科学基金项目,GmGDPD2调控大豆耐低磷胁迫的分子机制研究,2024-2027,在研,主持。
3. 国家自然科学基金面上项目 (32272171),氨基酸转运蛋白GmAAP8提高大豆水溶性蛋白含量的分子机制研究,2023-2026,在研,主持。
4. 国家自然科学基金面上项目 (32072088),
PE13调控大豆根系形态及磷效率的分子机理研究,2021-2024,在研,主持。
5. 国家自然科学基金青年基金项目 (31301336),大豆耐低磷新基因的鉴定及优异等位变异的发掘,2014-2016,结题,主持。
6. 国家重点研发计划项目 (2016YFD0100500),大豆水溶性蛋白重要功能基因发掘与分子机制研究,2016-2021,结题,主持。
7. 河南省重大科技专项子课题,大豆育种关键性状优异基因挖掘与品种选育,2022-2024,主持,在研。
8. 河南省联合攻关项目 (2022010304),河南省大豆良种重大科研联合攻关项目,2022-2025,主持,在研。
9. 河南省教育厅高校创新人才项目 (15HASTIT034),大豆耐低磷新基因的发掘与功能研究, 2015-2017,结题,主持。
10. 中国博士后第十批特别资助 (2017T100532),GmACP2参与大豆响应低磷胁迫的分子机理,2017-2019,结题,主持。
11. 中国博士后科学基金第58批面上项目 (2015M580630),大豆
GmACP2 基因的功能分析及育种利用研究, 2016-2017,结题,主持。
12. 河南省科技攻关项目 (30601916),高水溶性蛋白大豆优异种质的创制与应用,2019-2020,结题,主持。
13. 英国上市公司官网365科技创新基金项目 (KJCX2019C02),
GmERF1调控大豆根系形态及磷吸收的分子机理,2019-2020,结题,主持。
14. 国家重点实验室开放课题 (ZW2010003),大豆耐低磷相关基因的联合定位及图位克隆,2012-2013,结题,主持。
15. 国家973子课题 (CB1259060),大豆耐低磷新基因的发现与应用,2011-2013,结题,主持。
16. 河南省高等学校重点科研项目计划 (20A210017),GmAAP8提高大豆水溶性蛋白质含量的分子机制研究,2020-2021年,结题,主持。
17. 河南省高等学校青年骨干教师资助计划项目,大豆耐低磷主效QTL
qPE18的精细定位及图位克隆,2016-2017,结题,主持。
18. 河南省教育厅科学技术研究重点项目 (13B210056),大豆耐低磷相关QTL的精细定位研究,2012-2015,结题,主持。
发表论文
第一作者或通讯作者论文
1. Hu D, Cui R, Wang K, Yang Y, Wang R, Zhu H, He M, Fan Y, Wang L, Wang L, Chu S, Zhang J, Zhang S, Yang Y, Zhai X, Lv H, Zhang D, Wang J, Kong F, Yu D
*, Zhang H
*,
Zhang D*. The Myb73-GDPD2-GA2ox1 transcriptional regulatory module confers phosphate deficiency tolerance in soybean.
The Plant Cell, 2024, koae041.
2. Wang R, Liu X, Zhu H, Yang Y, Cui R, Fan Y, Zhai X, Yang Y, Chu S, Zhang J, Hu D*,
Zhang D*. Transcription factors GmERF1 and GmWRKY6 synergistically regulate low phosphorus tolerance in soybean.
Plant Physiology, 2023, 192: 1099-1114. doi:10.1093/plphys/kiad170.
3. Yang Y, Wang R, Wang L, Cui R, Zhang H, Che Z, Hu D, Chu S, Jiao Y, Yu D
*,
Dan Zhang*. GmEIL4 improved soybean tolerance to phosphorus deficiency by enhancing root system development.
Plant Cell and Environment, 2023, 46:592-606. doi.org/10.1111 /pce.14497.
4. Yang Y
+, Wang L
+,
Zhang D+, Che Z, Wang Q, Cui R, Zhao W, Huang F, Zhang H, Cheng H, Yu D. Soybean type-B response regulator GmRR1 mediates phosphorus uptake and yield by modifying root architecture.
Plant Physiology, 2023. doi: 10.1093/plphys/kiad570.
5. Wang L, Zhang J, Wang R, Huang Z, Cui R, Zhu H, Yang Y,
Zhang D*. Genome-wide identification and characterization of CA genes in soybean (
Glycine max),
Functional & Integrative Genomics, 2023, 23:37. doi: 10.1007/s10142-023-00966-9.
6. Xu H, Zhang H, Fan Y, Wang R, Cui R, Liu X, Chu S, Jiao Y, Zhang X
*,
Zhang D*. The purple acid phosphatase GmPAP17 predominantly enhances phosphorus use efficiency in soybean.
Plant Science, 2022, 320:111283. doi:10.1016/j.plantsci.2022.111283.
7. Yang Y, Wang L, Che Z, Wang R, Cui R, Xu H, Chu S, Jiao Y, Zhang H, Yu D
*,
Zhang D*. Novel target sites for soybean yield enhancement by photosynthesis.
Journal of Plant Physiology, 2022, 268:153580. doi:10.1016/j.jplph.2021.153580.
8. Liu X, Yang Y, Wang R, Cui R, Xu H, Sun C, Wang J, Zhang H, Chen H,
Zhang D*. GmWRKY46, a WRKY transcription factor, negatively regulates phosphorus tolerance primarily through modifying root morphology in soybean.
Plant Science, 2022, 315:111148. doi:10.1016/j.plantsci.2021.111148.
9. Zhang H, Hu Z, Yang Y, Liu X, Lv H, Song BH., An Y-QC, Li Z
*,
Zhang, D*. Transcriptome profiling reveals the spatial-temporal dynamics of gene expression essential for soybean seed development.
BMC Genomics, 2021, 22(1):453. doi:10.1186/s12864-021-07783-z.
10. Zhang J, Xu H, Yang Y, Zhang X, Huang Z
*,
Zhang D*. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting soybean genotypes subjected to phosphate starvation.
BMC genomics, 2021, 22(1):433. doi:10.1186/s12864-021-07750-8.
11. Sun C, Yang Y, Jia L, Liu X, Xu H, Lv H, Huang Z,
Zhang D*. QTL mapping of the genetic basis of stem diameter in soybean.
Planta, 2021, 253(5):109. doi:10.1007/s00425-021-03628-x.
12. Yang Y, Zhu X, Cui R, Wang R, Li H, Wang J, Chen H
*,
Zhang D*. Identification of soybean phosphorous efficiency QTLs and genes using chlorophyll fluorescence parameters through GWAS and RNA-seq.
Planta, 2021, 254(6):110. doi:10.1007/s00425-021-03760-8.
13. Zhang H, Yang Y, Sun C, Liu X, Lv L, Hu Z, Yu D,
Zhang D*. Up-regulating
GmETO1 improves phosphorus uptake and use efficiency by promoting root growth in soybean.
Plant Cell and Environment, 2020, 43, 2080-2094.
14. Liu X, Chu S, Sun C, Xu H, Zhang J, Jiao Y,
Zhang, D*. Genome-wide identification of low phosphorus responsive microRNAs in two soybean genotypes by high-throughput sequencing.
Functional & Integrative Genomics, 2020, 20(6): 825-838. doi:10.1007/s10142-020-00754-9.
15. Yu K, Wang J, Sun C, Liu X, Xu H, Yang Y, Dong L
*,
Zhang D*. High-density QTL mapping of leaf-related traits and chlorophyll content in three soybean RIL populations.
BMC Plant Biology, 2020, 20(1):470. doi:10.1186/s12870-020-02684-x.
16. Chu S, Zhang X, Yu K, Lv L, Sun C, Liu X, Zhang J, Jiao Y,
Zhang D*. Genome-Wide Analysis Reveals Dynamic Epigenomic Differences in Soybean Response to Low-Phosphorus Stress.
International Journal of Molecular Sciences, 2020, 21(18):6817. doi:10.3390/ijms21186817.
17. Lv L, Yu K, Lü H, Zhang X, Liu X, Sun C, Xu H, Zhang J, He X
*,
Zhang D*. Transcriptome-wide identification of novel circular RNAs in soybean in response to low-phosphorus stress.
PLoS One, 2020, 15(1):e0227243. doi:10.1371/journal.pone.0227243.
18.
Zhang D+*, Zhang H
+, Hu Z
+, Chu S, Yu K, Lv L, Yang Y, Zhang X, Chen X, Kan G, Tang Y, An Y-QC, Yu D
*. Artificial selection on
GmOLEO1 contributes to the increase in seed oil during soybean domestication.
Plos Genetics, 2019, 5(7):e1008267. doi:10.1371/journal.pgen.1008267.
19. Chu S, Li H, Zhang X, Yu K, Chao M, Han S
*,
Zhang D*. Physiological and Proteomics Analyses Reveal Low-Phosphorus Stress Affected the Regulation of Photosynthesis in Soybean.
International Journal of Molecular Sciences, 2018, 19(6):1688. doi:10.3390/ijms19061688.
20. Lü H, Yang Y, Li H, Liu Q, Zhang J, Yin J, Chu S, Zhang X, Yu K, Lv L, Chen X,
Zhang D*. Genome-Wide Association Studies of Photosynthetic Traits Related to Phosphorus Efficiency in Soybean.
Frontiers in Plant Science, 2018, 9:1226. doi:10.3389/fpls.2018.01226.
21.
Zhang D+*, Lü H
+, Chu S, Zhang H, Zhang H, Yang Y, Li H, Yu D*. The genetic architecture of water-soluble protein content and its genetic relationship to total protein content in soybean.
Scientific Reports, 2017, 7(1):5053. doi:10.1038/s41598-017-04685-7.
22.
Zhang D*, Zhang H, Chu S, Li H, Chi Y, Triebwasser-Freese D, Lv H, Yu D. Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress.
Plant Molecular Biology, 2017, 93:137-150. doi:10.1007/s11103-016-0552-x.
23. Zhang H, Chu S,
Zhang D*. Transcriptome Dataset of Soybean (Glycine max) Grown under Phosphorus-Deficient and-Sufficient Conditions.
Data, 2017, 2(2):17. doi:10.3390/data2020017.
24. Li H, Yang Y, Zhang H, Chu S, Zhang X, Yin D, Yu D,
Zhang D*. A Genetic Relationship between Phosphorus Efficiency and Photosynthetic Traits in Soybean As Revealed by QTL Analysis Using a High-Density Genetic Map.
Frontiers in Plant Science. 2016, 7:924. doi:10.3389/fpls.2016.00924.
25.
Zhang D, Li H, Wang J, Zhang H, Hu Z, Chu S, Lv H, Yu D. High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean.
Frontiers in Plant Science, 2016, 7:372. doi:10.3389/fpls.2016.00372.
26.
Zhang D+, Song H
+, Cheng H
+, Hao D, Wang H, Kan G, Jin H, Yu D. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress.
PLoS Genetics, 2014, 10(1):e1004061. doi:10.1371/journal.pgen.1004061.
27.
Zhang D, Kan G, Hu Z, Cheng H, Zhang Y, Wang Q, Wang H, Yang Y, Li H, Hao D, Yu D. Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean.
Theoretical And Applied Genetics, 2014, 127(9):1905-15. doi:10.1007/s00122-014-2348-1.
28.
Zhang D, Cheng H, Hu Z, Wang H, Kan G, Liu C, Yu D. Fine mapping of a major flowering time QTL on soybean chromosome 6 combining linkage and association analysis.
Euphytica, 2013, 191(1):23-33. doi:10.1007/s10681-012-0840-8.
29.
Zhang D, Cheng H, Wang H, Zhang H, Liu C, Yu D. Identification of genomic regions determining flower and pod numbers development in soybean (
Glycine max L.).
Journal of Genetics and Genomics, 2010, 37(8):545-56. doi:10.1016/S1673-8527(09)60074-6.
30.
Zhang D, Liu C, Cheng H, Kan G, Cu S, Meng Q, Gai J, Yu D. Quantitative trait loci associated with soybean tolerance to low-Phosphorus stress based on flower and pod abscission.
Plant Breeding, 2010, 129(3):243-249. doi:10.1111/j.1439-0523.2009.01682.x.
31.
Zhang D, Cheng H, Geng L, Kan G, Cui S, Meng Q, Gai J, Yu D. Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seeding stage.
Euphytica, 2009, 167:313-322. doi:10.1007/s10681-009-9880-0.
参与发表论文
1. Xiong E, Qu X, Li J, Liu H, Ma H,
Zhang D, Chu S, Jiao Y. The soybean ubiquitin-proteasome system: Current knowledge and future perspective.
The Plant Genome, 2023, 16:e20281. doi:10.1002/tpg2.20281.
2. Wang L, Zhang J, Li H, Zhang G, Hu D,
Zhang D, Xu X, Yang Y, Huang Z. Genome-wide identification of the phytocyanin gene family and its potential function in salt stress in soybean (
Glycine max (L.) Merr.).
Agronomy, 2023, 13:2484. doi: 10.3390/agronomy13102484.
3. Hu D, Li X, Yang Z, Liu S, Hao D, Chao M, Zhang J, Yang H, Su X, Jiang M, Lu S,
Zhang D, Wang L, Kan G, Wang H, Cheng H, Wang J, Huang F, Tian Z, Yu D. Downregulation of a gibberellin 3 beta-hydroxylase enhances photosynthesis and increases seed yield in soybean.
New Phytologist, 2022, 235:502-517. doi:10.1111/nph.18153.
4. Zhang S, Hao D, Zhang S,
Zhang D, Wang H, Du H, Kan G, Yu D. Genome-wide association mapping for protein, oil and water-soluble protein contents in soybean.
Molecular Genetics and Genomics, 2021, 296:91-102. doi:10.1007/s00438-020-01704-7.
5. Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H,
Zhang D, Zhang L, Wang Z, Yang Y, Yu D, Liu X, Yang Q, Lin X, Tang Y, Zhao X, Yang X, Tian C, Xie Q, Li X, Yuan X, Tian Z, Liu B, Weller JL, Kong F. .
Nature Genetics, 2020, 52:428-436. doi:10.1038/s41588-020-0604-7.
6. Yang Y, Wang L,
Zhang D, Cheng H, Wang Q, Yang H, Yu D. GWAS identifies two novel loci for photosynthetic traits related to phosphorus efficiency in soybean.
Mol Breeding, 2020, 40:29. doi:10.1007/s11032-020-01112-0.
7. Zhang H, Yan H,
Zhang D, Yu D. Ectopic expression of a soybean SVP-like gene in tobacco causes abnormal floral organs and shortens the vegetative phase.
Plant Growth Regulation, 2016, 80:345-353. doi:10.1007/s10725-016-0173-z.
8. Wang Q, Wang J, Yang Y, Du W,
Zhang D, Yu D, Cheng H. A genome-wide expression profile analysis reveals active genes and pathways coping with phosphate starvation in soybean.
BMC Genomics, 2016, 17:192. doi:10.1186/s12864-016-2558-9.
9. Ning L, Sun P, Wang Q, Ma D, Hu Z,
Zhang D, Zhang G, Cheng H, Yu D. Genetic architecture of biofortification traits in soybean (
Glycine max L. Merr.) revealed through association analysis and linkage mapping.
Euphytica, 2015, 204:353-369. doi:10.1007/s10681-014-1340-9.
10. Kan G, Wang W, Yang W, Ma D,
Zhang D, Hao D, Hu Z, Yu D. Association mapping of soybean seed germination under salt stress.
Molecular Genetics and Genomics, 2015, 290:2147-2162. doi:10.1007/s00438-015-1066-y.
11. Song H, Yin Z, Chao M, Ning L,
Zhang D, Yu D. Functional properties and expression quantitative trait loci for phosphate transporter
GmPT1 in soybean.
Plant Cell and Environment, 2014, 37:462-472. doi: 10.1111/pce.12170.
12. Hu Z,
Zhang D, Zhang G, Kan G, Hong D, Yu D. Association mapping of yield-related traits and SSR markers in wild soybean (
Glycine soja Sieb. and Zucc.).
Breeding Science, 2014, 63:441-449. doi:10.1270/jsbbs.63.441.
13. Hu Z, Zhang H, Kan G, Ma D,
Zhang D, Shi G, Hong D, Zhang G, Yu D. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (
Glycine max L. Merr.).
Genetica, 2013, 141:247-254. doi:10.1007/s10709-013-9723-8.
14. Hao D, Cheng H, Yin Z, Cui S,
Zhang D, Wang H, Yu D. Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (
Glycine max) landraces across multiple environments.
Theoretical and Applied Genetics, 2012, 124:447-458. doi:10.1007/s00122-011-1719-0.
15. Zhang H,
Zhang D, Han S, Zhang X, Yu D. Identification and gene mapping of a soybean chlorophyll-deficient mutant.
Plant Breeding, 2011, 130:133-138. doi:10.1111/j.1439-0523.2010.01844.x.
16. Wu Q, Wu J, Sun H,
Zhang D, Yu D. Sequence and expression divergence of the
AOC gene family in soybean: insights into functional diversity for stress responses.
Biotechnology Letters, 2011, 33:1351-1359. doi:10.1007/s10529-011-0585-9.
17. Cheng H, Yang H,
Zhang D, Gai J, Yu D. Polymorphisms of soybean isoflavone synthase and flavanone 3-hydroxylase genes are associated with soybean mosaic virus resistance.
Molecular Breeding, 2010, 25:13-24. doi:10.1007/s11032-009-9305-8.
授权发明专利
1.
Dan Zhang, Shanshan Chu, Yongqing Jiao. Soybean Oleosin Gene GmOLEO1 and Its Coding Protein and Application, 2022.2.25, Luxembourg, LU500576
2. Jiaoyong Qing,
Dan Zhang, Huatao Chen, Yuming Yang, Hengyou Zhang, Shanshan Chu. USE OF SOYBEAN PROTEIN KINASE GENE GmSTK_IRAK, 2022.6.21, Luxembourg, LU501061
3.
Dan Zhang, Shanshan Chu, Yongqing Jiao, Yuming Yang. Molecular Marker Indel6 for Oil-related Gene and Application Thereof, 2022.3.1, Luxembourg, LU500606
4.
Dan Zhang, Haiyan Lv, Yuming Yang, Hengyou Zhang, Li Wang. USE OF GMAAP PROTEIN AND GMAAP GENE IN BREEDING SOYBEANS, 2021.11.9,Netherlands, 2027897
5. Huatao Chen,
Dan Zhang, Xingguo Zhang, Hengyou Zhang, Jinshe Wang, Shanshan Chu, Yongqing Jiao. USE OF SOYBEAN PROTEIN KINASE GENE GMSTK_IRAK,2022.11.24, Netherlands, 2030468
6.
张丹,吕海燕,杨宇明,张恒友,王莉。GmAAP蛋白和GmAAP基因在大豆育种中的应用,2022.2.8,中国,ZL202011354096.3
7.
张丹,杨宇明,张恒友,吕海燕,褚姗姗。一种大豆蛋白激酶基因GmSTK_IRAK的应用,2021.9.21,中国,ZL202011330937.7
8.
张丹,董中东,刘伟,马兴立,李忠锋。一种油分相关基因分子标记Indel6及其应用,2020.1.7,中国,ZL201910168673.0
9.
张丹,褚姗姗,马兴立。大豆耐低磷基因
GmACP2、编码蛋白及其应用,2020.1.31,中国,ZL201610294032.6
10.
张丹,褚姗姗,李红岩。大豆油体蛋白基因
GmOLEO1及其编码蛋白与应用, 2020.4.17,中国,ZL201710059317.6
奖励与荣誉
1.“中原英才计划”青年拔尖人才,2021
2. 河南省教育厅优秀科技论文奖一等奖,2021
3. 河南省教育厅优秀科技论文奖一等奖,2019
4. 河南省第四届自然科学学术论文一等奖,2017
5. 河南省第三届自然科学学术论文一等奖,2015
6. 中国遗传学会数量遗传会会员,2019
7. 英国上市公司官网365就业创业工作先进工作者,2019
8. 中国博士后科学基金获得者选介,2018
9. 河南省耕地轮作扩种大豆专家组成员,2018
10. 河南省品种审定委员会委员,2017
11. 河南省高校创新人才,2016
12. 河南省青年骨干教师,2015